A generalized Gaussian image model for edge-preserving MAP estimation
نویسندگان
چکیده
The authors present a Markov random field model which allows realistic edge modeling while providing stable maximum a posterior (MAP) solutions. The model, referred to as a generalized Gaussian Markov random field (GGMRF), is named for its similarity to the generalized Gaussian distribution used in robust detection and estimation. The model satisfies several desirable analytical and computational properties for map estimation, including continuous dependence of the estimate on the data, invariance of the character of solutions to scaling of data, and a solution which lies at the unique global minimum of the a posteriori log-likelihood function. The GGMRF is demonstrated to be useful for image reconstruction in low-dosage transmission tomography.
منابع مشابه
A Robust Method for Edge-Preserving Image Smoothing
Image smoothing is a critical preprocessing step in many image processing tasks. In this paper, a generalized edge-preserving smoothing model is derived from robust statistics theory, and its connections to anisotropic diffusion and bilateral filtering are established. The relationships allow us to derive an improved numerical scheme in the context of a robust estimation process for edge preser...
متن کاملEdge Width Estimation for Defocus Map from a Single Image
The paper presents a new edge width estimation method based on Gaussian edge model and unsharp mask analysis. The proposed method is accurate and robust to noise. Its effectiveness is demonstrated by its application for the problem of defocus map estimation from a single image. Sparse defocus map is constructed using edge detection algorithm followed by the proposed edge width estimation algori...
متن کاملExact distribution of edge-preserving MAP estimators for linear signal models with Gaussian measurement noise
We derive the exact statistical distribution of maximum a posteriori (MAP) estimators having edge-preserving nonGaussian priors. Such estimators have been widely advocated for image restoration and reconstruction problems. Previous investigations of these image recovery methods have been primarily empirical; the distribution we derive enables theoretical analysis. The signal model is linear wit...
متن کاملAn Edge Preserving Regularization Based Approch for Dense Stereo Matching
In this paper, we solve the problem of dense disparity estimation using a stereo image pair. Unlike other approaches, our method uses an edge preserving regularization prior based on IGMRF (Inhomogeneous Gaussian Markov Random Field) model. The IGMRF parameters are spatially varying and are estimated at every pixel location using an initial estimate of the disparity map. An initial estimate of ...
متن کاملEdge preserving image denoising with a closed form solution
This paper addresses the problem of image denoising which is still a valid challenge at the crossing of functional analysis and statistics. We herein propose a novel pixel-based algorithm, which formulates the image denoising problem as the maximum a posterior (MAP) estimation problem using Markov random fields (MRFs). Such an MAP estimation problem is equivalent to a maximum likelihood (ML) es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 2 3 شماره
صفحات -
تاریخ انتشار 1993